

Kanishk Kakar
kanishk.kakar@gmail.com
github.com/kanishk98
GMT +05:30
India, fluent in English

Polishing Zulip (Electron)
Making the desktop client an obvious choice for Zulip users

ABSTRACT

With its innovative threading model and robust webapp, Zulip has received a lot of praise from
remote teams that use it. While the desktop app is certainly complete in terms of features, it
needs some polish and certain standout features to make it an obvious choice for a Zulip user
to install.

In this proposal, I suggest the implementation of multiple features to achieve the above goal.

PROPOSED DELIVERABLES

By the end of the summer, I intend to have implemented the following features:

Enterprise deployment

Currently, there is no Zulip-enabled way for admins to deploy the app with custom settings for
multiple users in an enterprise setting. After discussions with the community, I’ve been working
with Vipul Sharma to implement a system that allows the admin to write a script for configuring
the app as they require via a .json file in the root directory.

My role so far while developing this feature has been to add an EnterpriseUtil module
that configures settings at various places in the app and allows admins to also configure
whether keeping a setting admin-only is required or not.

I expect to have completed this feature before the community bonding period begins.

WIP PR #681

Replacing <webview> with BrowserView

We currently use <webview> for rendering all content except the sidebar in the app window.
However, the Electron team has warned developers against using <webview> because of
certain persistent bugs. In a discussion here, it was agreed that we should go with

https://chat.zulip.org/#narrow/stream/16-desktop/topic/high.20availability
https://github.com/zulip/zulip-electron/pull/681
https://electronjs.org/docs/api/webview-tag#warning
https://chat.zulip.org/#narrow/stream/16-desktop/topic/webview

BrowserView instead because it has been reported to boost performance and address several
issues related to rendering embedding content. While we haven’t seen complete failures of the
renderer like Slack has, it would be wise to shift before <webview> prevents us from updating
Electron versions.

Moving to BrowserView is complicated because of the differences between webview and
BrowserView. I’ve listed the challenges below and explained how I’ll be tackling them.

Supporting multiple server tabs in one window

While Slack’s post about this migration was helpful, it didn’t explain how to handle this
issue because they use multiple windows for multiple workspaces. We should be able to
use the same window for multiple servers because of this PR getting merged into
Electron 5.0.0-beta.1.

I’ll first work around this by creating a new BrowserView for the sidebar along with one
for each server tab. I tried to implement a very basic implementation of this last night,
and here’s a screenshot for your reference:

This shows two chat screens on the same page as proof-of-concept: we can make n + 1
BrowserViews in the main process, one for the sidebar and n for the number of servers

https://electronjs.org/docs/api/browser-view
https://slack.engineering/growing-pains-migrating-slacks-desktop-app-to-browserview-2759690d9c7b
https://github.com/electron/electron/pull/16148

the user has. On switching tabs, we can simply run
win.removeBrowserView(oldView) and win.addBrowserView(newView).

Listeners and custom CSS
Most listeners and webview-related tasks can be handled by using the
browserView.webContents object. This will have to be supplemented by passing
messages via IPC from the renderer to the main process. For example, when a click is
detected on a button in the sidebar, that message is sent to the main process, where we
then perform the required actions.

Communication
The BrowserViews will communicate with each other using the main process as the
common medium. Actions will be registered by the renderer processes and then acted
upon by the main process (meaning that ipcRenderer.on(‘event’) calls will mostly
be minimised). This’ll help keep a clear structure in the app.

Database migration

As we add more features like the one above that require increasingly complex logic for handling
the user’s app data, we’ll see that the current method of using node-json-db is insufficient for
our needs. After discussion with Akash Nimare, I suggest moving to lowdb since that gives us
access to the entire lodash API and just like node-json-db, is a small local JSON database that
fits our use case.

Automated testing

We have currently set up Travis CI only for style checks and linting. This PR has already
addressed the lack of unit tests. It’ll help maintainers a lot if they can simply check for unit test
failures before reviewing a PR. Since the tests have been written using karma, implementing
automated tests shouldn’t be difficult.

Along with setting up a workflow for automated testing using Travis, I shall also be writing tests
for the new features I build over the summer and investigating whether we need more tests for
the ones that already exist.

Task manager

There have been multiple issues (#695, #213) about high memory/CPU usage. While these are
mostly upstream issues in Electron or Chromium, it would be a great benefit to be able to see
statistics of the app’s usage resources. I suggest we do something similar to Wavebox and add
a task manager:

https://electronjs.org/docs/api/web-contents
https://github.com/Belphemur/node-json-db
https://github.com/typicode/lowdb
https://github.com/zulip/zulip-electron/pull/526
https://github.com/zulip/zulip-electron/issues/695
https://github.com/zulip/zulip-electron/issues/213

Since Electron depends on Chromium, memory usage stats reported by native OS process
monitors like Windows Task Manager suffer from double-counting: they count memory shared
among multiple renderer processes multiple times. The Chromium Blog covers this here.
In addition, it’s beneficial for our users who file bug reports to be able to quickly look at resource
usage without having to open native process monitors. As we head towards a restructuring of
the app with BrowserView, such information will be incredibly useful in assessing if our work
has paid off.

Conversion to TypeScript

Work for supporting TypeScript in the codebase has already been done in PR #610. My plan is
not to move the entire codebase to TypeScript in one go once this PR is merged, but start with
the features I’m directly working on, and then make a gradual move to TS by changing the files I
fix bugs in and so on. I will therefore not be mentioning this in my schedule below; it’ll happen
throughout the summer.

Issues to solve

http://www.chromium.org/developers/memory-usage-backgrounder
https://github.com/zulip/zulip-electron/pull/610

There are multiple issues reported to the Zulip repository. I intend to solve some of the most
critical as follows:

1. Google login opens in app, not browser
Some users may be concerned about not logging in to Google via their browser (mostly
because of saved login sessions and passwords). I’ll try to figure out if OAuth can
redirect from the browser to the app somehow to indicate auth state.

2. Inappropriate “Not a Zulip server error” with locked-down hosts
This issue needs further testing to make sure it hasn’t regressed after v1.4.0. (The OP
has stopped responding, and I’ll check the validation logic and compare it with current
tests in the app).

3. Zulip client won’t connect after hibernation
Like the two issues above, this one also requires comprehensive testing. Since it has
occurred sporadically across different operating systems and network configurations,
this’ll be at the highest priority for me during this sprint of the coding period.

4. Sidebar count won’t open if you get too far behind
Initially, we could not retrieve unread message count for a server if the “Welcome...catch
up” modal was shown, which meant that the user might think they’re up to date on
servers with a lot of unread messages. After this discussion, I should be able to fix this
easily.

5. Stop checking from error from zulip.ogg if 400 error received
I intend to collaborate with the contributor to this PR when I’m writing unit tests to help
them solve this issue (as per the discussion, the validation logic itself is correct, it just
needs to be tested).

6. Online check ignores proxy settings
Somewhat related to issue 3 above. I’ll follow a similar plan here, and discuss with the
maintainers if adding unit tests is required.

7. Add a setting to change spellcheck language
Related with a couple of other high-priority issues (#662 and #646). I’ll be tackling this
first, going to #662 and then #646 using what I learn from the main solution.

Completing pending PRs

I’ve sent in quite a few challenging pull requests. These include making server tabs draggable,
adding a browser-like loading icon to the sidebar, fixing icon reload issues, a URL entry bar, and
so on. Regardless of my application result, I intend to complete these by April 25 so that the
accepted GSoC candidate can focus on their proposal instead of dealing with unfinished PRs.

https://github.com/zulip/zulip-electron/issues/464
https://github.com/zulip/zulip-electron/issues/46
https://github.com/zulip/zulip-electron/issues/312
https://github.com/zulip/zulip-electron/issues/372
https://github.com/zulip/zulip/pull/8520
https://github.com/zulip/zulip-electron/issues/573
https://github.com/zulip/zulip-electron/pull/654
https://github.com/zulip/zulip-electron/issues/591
https://github.com/zulip/zulip-electron/issues/542
https://github.com/zulip/zulip-electron/issues/662
https://github.com/zulip/zulip-electron/issues/646
https://github.com/zulip/zulip-electron/pull/617
https://github.com/zulip/zulip-electron/pull/674
https://github.com/zulip/zulip-electron/pull/693
https://github.com/zulip/zulip-electron/pull/655

PLANNED SCHEDULE

During the GSoC coding period, I will have no other professional commitments. I expect to work
8-10 hours a day during this time, including weekends. I’ll be available for almost the entirety of
the summer after my selection. I’ve noted the exceptions below.

Please note that I’ll be spending all time from May 16 to July 21 incrementally working on the
important issues listed above. Since they require testing and discussion, I don’t think it’s a great
idea to try fixing them in a single sprint.

Here’s how I plan to spend my time working with Zulip:

Time Task

Before GSoC
(April 10 - April 25)

● Fix assigned issues
● Improve pending PRs as per recent

code reviews
● Finish enterprise deployment

Community bonding period
(May 6 - May 27)

I’ll be unavailable to code from April 26 - May
15 on account of my final exams. However, I
will stay in touch with the community at czo.

● Research more about implementation
of BrowserView, see if Zulip is
extremely dependent on a <webview>
API and work with the upstream
repositories for workaround

● Migrate database to lowdb

May 27 - June 3 ● Write unit tests for database actions
● Design front-end for sidebar as

BrowserView

June 4 - June 22 ● Implement addition/deletion of
servers as BrowserViews

● Integrate switching of servers with the
sidebar

June 23 - June 24 ● Prepare and submit evaluation 1

June 25 - July 1 ● Add Task Manager
● Examine memory usage with increase

in the number of BrowserViews using
Task Manager

● Submit evaluation 1

July 2 - July 12 ● Set up automated testing with Travis
CI

● Testing includes support for tests
written so far in #526

July 12 - July 21 ● Finish up work on important issues
listed

July 22 - August 1 ● Investigate analytics tools for logging
outlier statistics reported by Task
Manager

● Integrate this into the app if possible
● (Before July 26) submit evaluation 2

August 2 - August 19 ● Buffer period for unforeseen hiccups
● Prepare final evaluation

August 19 - August 26 ● Submit final evaluation

CONTRIBUTIONS TO ZULIP

I’m proud to have been a regular contributor to Zulip, both in terms of code and discussions.
My merged PRs are:

● Default to starting app on login
● Switch to next server on Ctrl + Tab
● Fix context menu indexing
● Add context menu to letter icon
● Disable beta updates if auto updates disabled

Nearly merged/approved PRs:

● Make org tabs draggable in sidebar
● Add option to find accounts by email
● Add option to hide menu bar to View menu

Complete but open PRs, waiting for further review/discussion:

● Add zulip:// URI scheme for navigating within app
● Revert to fallback icon only if needed
● Trim domain to first word in server URL
● Add loading indicator to sidebar
● Add URL copy/paster to left sidebar
● Fix flashing icons of servers in sidebar

https://github.com/zulip/zulip-electron/pull/526
https://github.com/zulip/zulip-electron/pull/679
https://github.com/zulip/zulip-electron/pull/663
https://github.com/zulip/zulip-electron/pull/642
https://github.com/zulip/zulip-electron/pull/619
https://github.com/zulip/zulip-electron/pull/586
https://github.com/zulip/zulip-electron/pull/617
https://github.com/zulip/zulip-electron/pull/638
https://github.com/zulip/zulip-electron/pull/666
https://github.com/zulip/zulip-electron/pull/716
https://github.com/zulip/zulip-electron/pull/714
https://github.com/zulip/zulip-electron/pull/693
https://github.com/zulip/zulip-electron/pull/674
https://github.com/zulip/zulip-electron/pull/655
https://github.com/zulip/zulip-electron/pull/621

WIP PRs:

● Add custom configurations for enterprise (collaborative effort with Akash, Priyank, and
Vipul)

● Mute organization badge and server count (depends on a web app-enabled setting)

I’ve also opened a few issues to report bugs or enhance functionality. They are:

● Can’t run Travis checks locally [Windows]
● Cursor does not focus in Settings box after soft reload (Ctrl/Cmd + R)
● Individual screens for showing network error

WORK EXPERIENCE

After my first year of college, I worked with Prof. S. Mathur as a data analytics intern and used
statistics to offer insights into certain case studies. After my second year, I worked with Reap
Benefit Foundation to work on an Android app that would detect potholes on Indian roads.

As an intern at RBF, I re-structured the app to eliminate the need for storing and uploading large
log files containing phone sensor data by standardising readings across different devices and
processing the files offline. On average, this resulted in a 100x reduction of storage space taken
by the app.
Initially, the app was only intended for usage in cars. I wrote a new autoencoder algorithm that
could account for outliers and classify potholes on any vehicle type, and also moved that offline
by using TensorFlow for Android.

OPEN-SOURCE EXPERIENCE

Before contributing to Zulip, I contributed to GitHub Desktop (also an Electron app). Here’s a list
of my contributions there:

● [Issue] Auth error prompt when cloning non-existent repo
● [PR] Add compare-to-branch to MenuIDs
● [PR] Fixed auth error prompt when cloning non-existent repo

I have also created a downloader library for Android that’s targeted at emerging markets in
discussion with the Mozilla community.

Road Quality Audit (the pothole detector app I worked on during my second internship) is an
open-source product.

I’ve also worked on several personal projects, all of which are open-source:

https://github.com/zulip/zulip-electron/pull/681
https://github.com/zulip/zulip-electron/pull/626
https://github.com/zulip/zulip-electron/issues/636
https://github.com/zulip/zulip-electron/issues/697
https://github.com/zulip/zulip-electron/issues/694
https://www.linkedin.com/in/sameermathur/
https://www.reapbenefit.org/
https://www.reapbenefit.org/
https://github.com/padiboi/potholedetector
https://github.com/kanishk98/pothole-finder
https://github.com/desktop/desktop
https://github.com/desktop/desktop/issues/5661
https://github.com/desktop/desktop/pull/5673
https://github.com/desktop/desktop/pull/5816
https://github.com/kanishk98/downloader-library
https://github.com/padiboi/potholedetector

● Nucleus
Social networking app exclusively for college students. Allows them to chat
anonymously with new people, find anyone in college without a phone number, and post
questions anonymously and get anonymous votes on them. Built using React Native and
GraphQL.

● Transaction scheduler
Demonstration of a scheduling algorithm for a multi-user database system. Locking in
databases is a complex problem, and I attempted to implement and improve upon a
research paper on contention-aware lock scheduling for transactional databases. Uses
the batched Largest Dependency Set First algorithm. Written in Python.

● Kanishk’s GraphQL to-do app
Built as a demonstration of the capabilities of Hasura’s GraphQL engine. The app was
reviewed and praised by Tanmai Gopal, the CEO of Hasura. You may check it out in
action or read a tutorial explaining how I built the app. I used React.js for the web app.

● Dell Inventory Manager
A Dell hackathon project to decide what to do with aging inventory. I worked on the
back-end and front-end infrastructure of the app, while the machine learning model and
data preprocessing was handled by other members of my team. Built using React.js,
Express, Flask, and Keras.

● SKCH-CBM Marker
Android solution for SKCH School, Bangalore to mark exact locations of their bus stops
so they can distribute the collected locations to parents and students.

WHY ZULIP

I first learned about Zulip when I came to college and saw other students putting Zulip stickers
on their laptops. I checked it out online, learnt about the threading model and the inspiration
behind it, but didn’t really understand how it would help me or how I could help the Zulip
community. A couple of years, multiple projects, and lots of collaborative work later, I came to
realise the value that Zulip brings to the table as an enabler of communication. I’m someone
who loves to build systems that help people interact (Nucleus is an example) and I think that
contributing to the desktop app, something I use daily now for communication, would be a great
use of my time and my way of giving back to the community that has taught me the most about
Electron development.

https://github.com/kanishk98/nucleus
https://github.com/kanishk98/transaction-scheduler
https://web.eecs.umich.edu/~mozafari/php/data/uploads/pvldb_2018_sched.pdf
https://github.com/kanishk98/graphql-todo
https://hasura.io/
https://quiet-fortress-95138.herokuapp.com/
https://quiet-fortress-95138.herokuapp.com/
https://kanishk98.github.io/graphql-todo
https://github.com/kanishk98/dell_hacktohire_snu_bubblegum
https://github.com/kanishk98/marker-school

WHY ME

My entry into development was as an Android developer. I started pretty late; in the middle of
my second year in college. Since then, I have made it a point to learn, build, and iterate over my
projects quickly; in a year, I have come from not knowing what a REST API was to working with
GraphQL companies and creating tutorials about their technology.
I have significant experience in developing complex apps - both Nucleus and the Pothole
Detector app had a lot of moving parts and required me to carefully think about app
architecture. I’m proud of the effort I can put in and am excited by challenging work
environments. With a possible restructuring of the desktop app around the corner, I believe
these qualities make me a good fit for Zulip.

POST GSoC

I’m confident that even after my work with Zulip over the summer, there will be a lot of room for
improvement in the desktop app. I plan to branch out a little into the Zulip ecosystem after the
summer because I’m also really interested in how the back-end of a messaging platform as
massive as this works at scale.

